Basis-Transitive Matroids
نویسندگان
چکیده
We consider the problem of classifying all finite basis-transitive matroids and reduce it to the classification of the finite basis-transitive and point-primitive simple matroids (or geometric lattices, or dimensional linear spaces). Our main result shows how a basisand point-transitive simple matroid is decomposed into a so-called supersum. In particular each block of imprimitivity bears the structure of two closely related simple matroids, and the set of blocks of imprimitivity bears the structure of a pointand basis-transitive matroid.
منابع مشابه
BASES AND CIRCUITS OF FUZZIFYING MATROIDS
In this paper, as an application of fuzzy matroids, the fuzzifying greedy algorithm is proposed and an achievableexample is given. Basis axioms and circuit axioms of fuzzifying matroids, which are the semantic extension for thebasis axioms and circuit axioms of crisp matroids respectively, are presented. It is proved that a fuzzifying matroidis equivalent to a mapping which satisfies the basis ...
متن کاملMatroidal Structure of Rough Sets Based on Serial and Transitive Relations
The theory of rough sets is concerned with the lower and upper approximations of objects through a binary relation on a universe. It has been applied to machine learning, knowledge discovery, and data mining. The theory of matroids is a generalization of linear independence in vector spaces. It has been used in combinatorial optimization and algorithm design. In order to take advantages of both...
متن کاملClosed-set lattice of regular sets based on a serial and transitive relation through matroids
Rough sets are efficient for data pre-processing in data mining. Matroids are based on linear algebra and graph theory, and have a variety of applications in many fields. Both rough sets and matroids are closely related to lattices. For a serial and transitive relation on a universe, the collection of all the regular sets of the generalized rough set is a lattice. In this paper, we use the latt...
متن کاملConnectivity for matroids based on rough sets
In mathematics and computer science, connectivity is one of the basic concepts of matroid theory: it asks for the minimum number of elements which need to be removed to disconnect the remaining nodes from each other. It is closely related to the theory of network flow problems. The connectivity of a matroid is an important measure of its robustness as a network. Therefore, it is very necessary ...
متن کاملBasis-exchange Properties of Sparse Paving Matroids
It has been conjectured that, asymptotically, almost all matroids are sparse paving matroids. We provide evidence for five long-standing, basis-exchange conjectures by proving them for this large class of matroids. To Geoff Whittle on his 60th birthday
متن کامل